
Investigating thermal dynamics in 
cylindrical Li-ion batteries across 
varied temperatures based on 
electrochemical principles
Patryck Ferreira1,2 & Shu-Xia Tang1,2

Thermal dynamics in cylindrical Li-ion batteries, governed by electrochemical heat generation, are 
critical to performance and safety in high-power applications such as electric vehicles and grid storage. 
Building on our previous work, which introduced and validated both single-layer and multi-layer 
models, this study focuses exclusively on experimentally validating the multi-layer formulation under 
a broader range of ambient temperatures. The proposed multi-layer model captures temperature 
evolution across all internal components, including the electrolyte, electrodes, current collectors, and 
casing, accurately resolving spatial heat accumulation. Experimental validation is conducted across 
four temperatures (21 ◦C, 0 ◦C, 40 ◦C, and − 10 ◦C), demonstrating strong agreement and highlighting 
the model’s robustness. These results offer actionable insights into internal thermal behavior and may 
support the design of advanced thermal management strategies, contributing to the development of 
safer and more efficient Li-ion batteries for next-generation energy storage systems.

Li-ion batteries (LiBs) are essential to modern energy infrastructure, enabling the transition to electrified 
transportation and large-scale energy storage through their favorable energy density, durability, and low 
maintenance requirements1–3. Yet, their performance and safety are highly sensitive to thermal conditions, 
particularly in demanding applications such as electric vehicles and stationary storage systems4,5. In these 
contexts, repeated high-current operation and ambient temperature fluctuations can lead to uneven heat 
distribution, accelerating material degradation and compromising system reliability6,7.

During charge and discharge cycles, LiBs generate significant heat, resulting in internal temperature 
gradients that accelerate degradation and increase the risk of thermal runaway, a dangerous phenomenon 
driven by uncontrolled temperature increases and exothermic reactions7–9. Thermal runaway represents 
a major safety hazard, potentially leading to fires or explosions, particularly under extreme operational 
or environmental conditions4,5. While advancements in separators and electrolyte additives have reduced 
some risks, the intricate interplay of thermal, electrochemical, and mechanical processes continues to pose 
challenges for accurate modeling10,11. Furthermore, extreme ambient temperatures intensify these challenges 
by altering material properties and complicating effective thermal management strategies12. Recent advances in 
experimental techniques have significantly enhanced the ability to characterize thermal behavior in LiBs. For 
example, a calorimetric method using a cylindrical insulation chamber and temperature sensors was developed 
to quantify heat generation during cycling13. A prismatic-cell calorimeter with controlled boundary conditions 
was introduced to estimate specific heat and generation rates14. A heat flux-based technique was proposed for 
estimating thermal output in aluminum-air battery systems15. Additionally, an in-situ method that compensates 
for heat loss was developed to accurately characterize heat generation in large-format pouch cells under both 
high and low temperature-rise conditions16.

Accurate thermal modeling of lithium-ion batteries is essential for both safety and performance optimization, 
particularly under fast-charging and high-power conditions. While finite element approaches using tools like 
ANSYS17,18 and COMSOL19–21 enable detailed simulations of coupled electrochemical-thermal behavior, 
their high computational demands hinder real-time applicability. In contrast, reduced-order models22,23 have 
gained popularity for battery management systems due to their lower computational cost. These include core-
surface thermal representations24,25 and dynamic field estimation using impedance-based sensing or Kalman 
filtering techniques26,27. To further improve adaptability, recent work has introduced coupled PDE-ODE 
structures and adaptive observers that account for parameter variations and real-time conditions28,29. However, 
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many frameworks still assume uniform heat generation and constant material properties, which can obscure 
localized hotspots and transient gradients30. Detailed interactions involving the electrolyte across components 
also remain underexplored. Preliminary work has demonstrated that incorporating these effects improves 
the accuracy of thermal dynamics modeling, particularly when internal temperature gradients are critical for 
diagnostics and control31. The scaling of such models to full battery packs has also been addressed32. A recent 
study introduced both multi-layer and single-layer thermal models to capture temperature dynamics in different 
battery components, and an observer design was developed but applied only to the single-layer formulation33.

Despite these advancements, a critical need remains for models that balance physical accuracy with 
computational efficiency while resolving detailed internal thermal gradients across battery components. 
Motivated by these limitations, this study advances the electrochemical-thermal modeling of cylindrical cells 
by validating a high-resolution multi-layer framework under realistic operating conditions. The key technical 
contributions of this work are:

•	 Unlike previous studies that focus on room-temperature conditions33, this work extends validation across 
sub-zero and high-temperature environments, revealing temperature-dependent thermal discrepancies that 
influence battery performance and safety.

•	 This validation identifies limitations in temperature-independent modeling assumptions, emphasizing the 
need for adaptive thermal parameters to improve predictive accuracy, particularly in extreme conditions rel-
evant to electric vehicles, aerospace, and grid-scale storage.

These contributions enhance the practical applicability of high-fidelity thermal models in real-world settings 
and support future extensions to other cell formats and control-oriented applications.

The article is organized as follows: electrochemical-thermal dynamics presents the cascaded modeling 
framework, introducing the multi-layer thermal model and electrochemical heat generation via the Single 
Particle Model (SPM). Experimental setup and model validation describes the test bench, cycling protocols, 
and model validation under four ambient conditions. A subsection presents simulation results and validation 
metrics at 21◦C. Performance across ambient temperatures extends the analysis to 0 ◦C, 40 ◦C, and − 10 ◦C, 
evaluating model robustness and highlighting the effects of using temperature-independent parameters. Broader 
implications and future directions discusses scalability, applicability to other cell formats, and integration with 
battery management systems. The conclusion summarizes the main findings and future work. The Methods 
Section details the mathematical formulations and parameters used in the thermal and electrochemical models.

Electrochemical-thermal dynamics
The thermal behavior of LiBs is strongly influenced by electrochemical reactions during charge and discharge. 
In this study, a cascaded modeling framework is employed, in which electrochemical dynamics serve as the 
source of heat generation that, in turn, drives the temperature response. This hierarchical structure captures 
the directional coupling between electrochemical activity and thermal dynamics, enabling physically grounded 
insights into heat distribution and temperature evolution. To characterize these interactions, a high-resolution 
multi-layer electrochemical-thermal model is presented. The model reflects the spiral-wound geometry of 
cylindrical cells and resolves temperature distributions in each internal component across all layers. By aligning 
thermal states with the true physical architecture, the model provides detailed insight into internal temperature 
gradients that are critical for understanding localized heating and ensuring thermal safety. This approach enables 
accurate estimation of internal heat accumulation, identification of potential hotspot formation, and evaluation 
of heat dissipation mechanisms, all of which are essential for optimizing battery safety, performance, and 
longevity under high-power operating conditions.

Cylindrical battery structure and thermal modeling
As shown in Fig. 1a, the disassembled ANR26650M1B Li-ion cell from Lithium Werks, analyzed in the 
Distributed Parameter Systems and Control Laboratory at Texas Tech University reveals the spiral-wound 
configuration typical of cylindrical lithium-ion batteries. The component sequence separator (grey), negative 
electrode (blue), negative collector (black), positive electrode (pink), and positive collector (red) were confirmed 
through physical disassembly. These layers repeat throughout the cell, and a total of 38 layers were identified. 
The layered configuration not only maximizes electrochemical surface area but also strongly influences thermal 
pathways critical for temperature regulation33.

Based on the internal architecture of the battery, a thermal modeling framework is developed to analyze the 
propagation of temperature between individual components within the spiral wound configuration. As illustrated 
in Fig. 1b, the model resolves thermal behavior at the level of each material layer, including the electrodes, 
separators, current collectors, electrolyte, and external casing. The model tracks temperature states for critical 
regions, including the electrolyte (T0), negative and positive current collectors (T3, T7), electrodes (T2, T4, T6, 
T8), separators (T1, T5), and the outer casing (T9), along with the corresponding thermal resistances (R1-R9) 
and the ambient environment (Tair, Rair). Internal heat generation arises from electrochemical processes and 
propagates through the battery via conductive and convective pathways. Heat is assumed to originate near the 
battery core and disperse radially outward, constrained by the thermal resistances of each surrounding layer. This 
modeling structure enables high-resolution tracking of thermal gradients and dissipation patterns over time, 
providing valuable insights into heat distribution, which is a critical factor for assessing battery performance and 
ensuring thermal safety. The thermal architecture and modeling conventions adopted here follow the framework 
first introduced in our previous work33.
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Electrochemical dynamics
To represent the electrochemical processes that generate heat within LiBs, this study adopts the SPM as the 
underlying electrochemical framework. The SPM describes lithium transport by simplifying each electrode into 
a single representative spherical particle, capturing lithium diffusion dynamics within the solid phase of the 
active material. Unlike higher-fidelity models such as the Pseudo-2D (P2D) approach, which resolves both solid-
state and electrolyte-phase concentration gradients through complex partial differential equations, the SPM 
neglects electrolyte dynamics. This assumption significantly reduces computational effort while preserving the 
core dynamics necessary for capturing the relationship between current input and lithium concentration profiles 
in the electrodes. The primary advantage of using the SPM lies in its balance between physical interpretability and 
computational speed, making it particularly suitable for control, estimation, and real-time thermal modeling. 
A conceptual diagram of the SPM is presented in Fig. 2, which highlights the radial lithium diffusion in the 
spherical particles and the interaction with external current collectors.

Integration of electrochemical and thermal dynamics
The formulation of the cascaded electrochemical-thermal model begins with the electrochemical dynamics, 
which are fully detailed in the Methods Section. The applied current I(t) is used to drive the SPM, where lithium 
concentration profiles evolve according to the input (Eqs. (24)–(27)). From these concentration profiles, key 
intermediate quantities such as the exchange current density (Eq. (23)) and overpotential (Eq. (22)) are derived. 
The exchange current density and overpotential are then used to compute the terminal voltage V(t) of the battery 
(Eq. (20)). The resulting voltage is subsequently used to determine the electrochemical heat generation S(t) (Eq. 
(19)), which is then passed into the thermal model. This sequential structure establishes the cascaded interaction 
whereby electrochemical behavior influences the thermal response. The thermal model applies this heat source 
to calculate time-dependent temperature evolution across all internal layers using the multi-layer dynamics 
formulation (Eqs. (10)–(11)).

Experimental setup and model validation
To assess the accuracy of the proposed multi-layer electrochemical-thermal model, experimental validation 
was conducted in accordance with the verification principles outlined by the American Society of Mechanical 
Engineers (ASME V&V 10). The testing environment included a BTS-4000 Series 5V12A Battery Tester 
(NEWARE) and an ESPEC BTU-433 Criterion Benchtop Environmental Chamber. The BTS-4000 provided 

Figure 2.  Schematic of the SPM.

 

Figure 1.  LiB structure33. (a) Structure of a cylindrical battery; (b) Schematic of the spiral-wound structure 
and the thermal power generation model for each internal component.
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precise current control with an accuracy of ± 0.05% FS, ensuring consistent and reliable cycling conditions 
throughout the experiments. Figure 3 shows the experimental setup. Temperature measurements were acquired 
using Type K thermocouples (NEWARE), each with an accuracy of ± 1◦C.

The experimental tests were performed on a commercially available ANR26650M1B Li-ion cell from Lithium 
Werks, which is also routinely used in our laboratory. This cell was selected for its high discharge capability, 
robust construction, and relevance in high-demand applications such as electric vehicles and power tools. A 
single cell was used consistently across all experiments to maintain controlled conditions and ensure repeatable 
results, allowing precise validation of the proposed thermal model under identical geometry and usage history. 
Three sensors were mounted along the external surface using thermally conductive tape to ensure good thermal 
contact and reliable surface readings. Prior to each test, the environmental chamber was set to the target ambient 
temperature and allowed to stabilize for one hour to ensure uniform thermal conditions throughout the chamber.

The cycling protocol was programmed using the Neware BTS Battery Testing System, Version 8.0.0, developed 
by Neware Technology Co., Ltd.34, and consisted of four steps: (1) constant current-constant voltage (CCCV) 
charging at 10 A until reaching a cutoff voltage of 3.45 V, followed by a voltage hold until the current decreased to 
0.125 A; (2) a 60 s rest period to allow electrochemical and thermal stabilization; (3) constant current discharging 
at 10 A down to a cutoff voltage of 2.0 V; and (4) another 60 s rest. This four-step sequence constituted one 
full charge/discharge cycle and was repeated for the total number of cycles under each temperature condition. 
The protocol was designed to emulate high-demand usage scenarios while enabling clear observation of heat 
generation and relaxation behavior during each phase.

To evaluate model performance under varying thermal conditions, experiments were conducted sequentially 
at four ambient temperatures, with a 24-hour rest period between tests to allow electrochemical stabilization of 
the cell.

•	 21◦C: Served as the baseline representing standard room-temperature operation. A longer test comprising 
100 full charge/discharge cycles was conducted to assess long-term thermal behavior under nominal condi-
tions.

•	 0◦C: Represents cold conditions typically encountered in winter climates, where reduced electrochemical 
activity affects efficiency. A shorter test of 10 cycles was used.

•	 40◦C: Simulated high-temperature environments that may enhance reaction kinetics but increase the risk of 
accelerated degradation and thermal instability. This condition was also tested over 10 cycles.

•	 -10◦C: Reflected extreme cold scenarios such as sub-zero outdoor storage, which significantly increase inter-
nal resistance and impair battery performance35. This test likewise consisted of 10 cycles.

This order was chosen to first establish a performance baseline at standard conditions and to minimize potential 
damage from thermal stress before exposing the cell to more aggressive environments. Conducting the 100-cycle 
test at 21◦C also enabled robust internal model validation before applying the framework to additional 
conditions. These diverse conditions were selected to ensure that the model captures thermal behavior across a 
realistic range of operating environments. This work extends multi-layer model validation to both elevated and 
sub-zero temperature scenarios. This broader scope enhances the model’s relevance for practical applications 
where batteries operate under variable thermal loads.

Simulation setup and model validation
All simulations were performed in MATLAB R2024b, developed by MathWorks, Inc.36, on a laptop equipped 
with an Intel i7-13620H CPU, 32 GB of RAM, and an NVIDIA GeForce RTX 4050 GPU (6 GB). The equilibrium 
potentials U±(c±

ss(t)), used in calculating the terminal voltage V(t), are given by the following expressions33:

Figure 3.  Experimental setup with NEWARE battery tester and ESPEC chamber.
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where c±
ss(t) ≜ c±

s (t, R±
s ) represents the solid-phase lithium concentration at the particle surface. The 

governing equations for c±
s (t, rs) are detailed in the Methods Section.

Figure 4a shows the applied current profile, composed of ± 10 A pulses to reflect high-rate cycling. Figure 4b 
compares the resulting voltage from the SPM model against experimental data. The curvature observed in the 
positive current segments in Fig.  4a reflects the transition from constant current to constant voltage during 
the CCCV charging phase, where the current gradually tapers as the voltage limit is reached. Although each 
dataset contains the same number of charge/discharge cycles (10), the total duration of the test increases as 
the ambient temperature decreases. This behavior reflects the intrinsic temperature dependence of the battery’s 
internal kinetics and transport processes, which become slower at lower temperatures and naturally extend 
the time required to complete each cycle. The simulated voltage exhibits strong agreement with experimental 
observations throughout multiple cycling periods, closely matching both the timing and magnitude of transitions. 
Slight mismatches near voltage extrema likely stem from simplified assumptions that neglect certain secondary 
electrochemical effects. The model was executed over 100 charge-discharge cycles; however, due to the periodic 
nature of the profile, only the first 5,000 seconds are shown for clarity. The SPM captures key voltage trends and 
transitions with reasonable accuracy across multiple cycles. It achieved an RMSE of 0.482 V, which is acceptable 
for dynamic estimation but may reflect limitations from neglected electrochemical effects.

In the voltage profiles the rest segments appear longer than those in the corresponding current profiles. This 
visual discrepancy is not an artifact but reflects the inherent dynamic response of the battery. Prior to each rest 
step, a Constant-Voltage (CV) charging phase is employed, during which the voltage remains clamped at 3.45 V 
while the current decreases progressively until it reaches the cutoff threshold of 0.125 A. Because the voltage has 
already plateaued during this phase, it visually blends with the subsequent rest period, even though the current 
does not reach zero until the CV step completes. As a result, the onset of the voltage rest phase appears earlier 
than that of the current, although both are technically synchronized.

Beyond this CV effect, the voltage continues to evolve throughout the defined 60 s rest period, while the 
current remains at or near zero. This behavior is governed by internal electrochemical relaxation processes such 
as solid-phase lithium diffusion, electrolyte redistribution, and interfacial charge equilibration37.

The thermal modeling approach is detailed in the Methods Section, where the Multi-layer formulation is 
derived based on the internal architecture illustrated in Fig. 1b. The multi-layer model resolves the temperature 
evolution across all 38 internal layers of the 26650-format cell, offering higher spatial fidelity and improved 
accuracy in capturing internal thermal behavior. Although the single-layer model provides a simpler and more 
computationally efficient alternative, it lacks the resolution necessary to capture localized heating effects. Before 
extending the analysis to different ambient temperatures, Fig.  5a demonstrates the importance of internal 
thermal resolution by comparing the multi-layer model with a simplified single-layer formulation at 21◦C. While 
both models follow the overall temperature trends, the single-layer model, limited by its single-layer structure, 
lacks sufficient accuracy in capturing rapid transients and cooling dynamics. In contrast, the multi-layer model 
reproduces dynamic temperature fluctuations more precisely, especially during rapid cycling events. This result 

Figure 4.  Current and voltage at 21 ◦C33: (a) current profile; (b) comparison between the voltage obtained 
from the SPM and the experimental results.
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underscores the value of resolving component-level internal temperatures when analyzing heat accumulation 
and dissipation in cylindrical cells.

While both models track the general temperature profile, the single-layer formulation yielded a higher RMSE 
of 2.39◦C compared to 1.99◦C for the multi-layer model. This 17% reduction in error confirms that the additional 
internal structure improves the model’s predictive accuracy. From a modeling perspective, this comparison 
serves as a verification step, demonstrating that incorporating internal thermal layers offers advantages even 
when only external data are available for evaluation.

Figure  5b shows the average internal temperature evolution simulated by the multi-layer model 
for key components such as the electrolyte, separators, electrodes, and current collectors during 
repeated charge-discharge cycling. The average temperature of each internal component i ∈ 1, 8 
is determined by averaging its 38 corresponding temperature states across the battery layers, as 

defined by: T̄i(t) = 1
38

38∑
k=1

T38(k−1)+i(t). To simplify the representation, the two separators 

(T̄1, T̄5), two negative electrodes (T̄2, T̄4), and two positive electrodes (T̄6, T̄8) are further averaged in 
pairs: T̄1,5(t) = 1

2

(
T̄1(t) + T̄5(t)

)
, T̄2,4(t) = 1

2

(
T̄2(t) + T̄4(t)

)
, T̄6,8(t) = 1

2

(
T̄6(t) + T̄8(t)

)
. This 

procedure yields six representative internal temperatures used for visualization and analysis: electrolyte, separator, 
negative electrode, positive electrode, negative collector, and positive collector33. To improve clarity, only the 
first 5000 seconds of the simulation are displayed, as the thermal response becomes periodic beyond this range. 
During the initial cycles, the model captures a transient heating phase that stabilizes into a consistent oscillatory 
profile. Peak internal temperatures approach 58◦C during current application and drop to approximately 40◦C 
during rest periods, reflecting effective internal heat transfer and energy dissipation throughout the layered cell 
structure.

Some studies have reported internal thermal gradients using embedded thermocouples. For instance,38 
demonstrated that internal temperatures in cylindrical cells often exceed external readings during high-
current operation. Similarly,39 identified radial thermal disparities in jelly-roll configurations, and40 observed 
temperature differences exceeding 10◦C between the center and outer surface of LiFePO4 cells. Due to safety 
constraints, no internal sensors were used in our experiments. Measurements were limited to surface-mounted 
thermocouples on the battery case. Direct insertion of sensors into the battery was avoided to reduce the risk of 
short circuits and thermal runaway. Nonetheless, the multi-layer model at 21◦C predicted internal temperatures 
up to 15◦C higher than surface values during dynamic cycling, consistent with the behavior reported in the 
aforementioned studies.

Performance across ambient temperatures
To evaluate the robustness of the proposed multi-layer thermal model under varying ambient conditions, 
simulations were performed at 0◦C, 40◦C, and −10◦C. The simulated voltage and temperature profiles were 
compared against experimental measurements. All thermal parameters and resistances were assumed constant 
and calibrated at 20◦C. This simplification helps explain the observed cooling delay and minor discrepancies at 
0◦C and 40◦C. In contrast, larger deviations at −10◦C likely arise from the strong temperature dependence of 
thermal conductivity, specific heat, and convective coefficients, factors not taken into account in the constant-
parameter formulation.

Figures  6a–f present the current and voltage responses at three ambient temperatures: 0◦C (a) and (b), 
40◦C (c) and (d), and −10◦C (e) and (f). Figure 6a,c,e show the applied current profiles with alternating ± 10 A. 
Figure 6b compares the simulated voltage response from the SPM with experimental data at 0◦C, achieving an 
RMSE of 0.24 V. At 40◦C, Fig. 6d demonstrates a voltage RMSE of 0.46 V, indicating improved voltage prediction 
under colder conditions. Finally, Fig. 6f shows that voltage simulations at −10◦C remain accurate, with a low 
RMSE of 0.18 V. These results confirm that the SPM-based voltage predictions remain reliable across a wide 
range of temperatures, even when thermal discrepancies are more pronounced.

Figure 5.  Model validation at 21 ◦C33: (a) surface temperature; (b) internal temperature.
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Figure 7 focus on surface and internal temperature behavior across three ambient conditions: 0◦C (a) and 
(b), 40◦C (c) and (d), and −10◦C (e) and (f). At 0◦C, Fig. 7a shows the case temperature comparison (RMSE = 
2.0◦C), and internal temperatures in Fig. 6b display less pronounced lag, consistent with reduced heat generation 
and smaller thermal gradients. The inset in Fig. 7c reveals a mild delay in cooling, suggesting that temperature-
dependent thermal properties may still enhance model fidelity under cold conditions. At 40 ◦C, Fig. 7c shows 
the case temperature comparison with an RMSE of 2.1 ◦C, while Fig. 7d displays internal temperature evolution 
as simulated by the multi-layer model. The model estimates a surface peak temperature of 47.5 ◦C, closely 
aligning with the experimental value of 48.7 ◦C. The inset of Fig. 7d highlights that the electrolyte, separator, 
and electrode layers in the internal layers retain heat longer, revealing a persistent thermal delay. This behavior 
underscores the importance of accurately capturing internal heat transport under elevated ambient conditions, 
where cumulative heating can influence safety and performance. Despite the thermal dissipation lag, the 
model reproduces the overall heating-cooling pattern observed experimentally. Each heating cycle begins and 
peaks concurrently with the experiment, and the onset of cooling occurs at the same time, though the rate 
of temperature decrease in the model is slower, resulting in a consistent temporal offset during the cooling 
phase. At −10◦C, however, the case temperature error increases significantly (RMSE = 6.0◦C, Fig. 7e, while 
Fig. 7f shows that internal temperatures exhibit pronounced lag and increased peak values, further emphasizing 
the model’s underestimation of thermal resistance at sub-zero temperatures. The inset in Fig. 7e supports the 
hypothesis that key thermal properties shift significantly at sub-zero temperatures. These discrepancies highlight 
the model’s limitations under extreme cold and motivate the incorporation of temperature-dependent thermal 
properties to improve accuracy for low-temperature applications.

Figure 6.  Validation of the electrochemical model under dynamic pulse profiles at different ambient 
temperatures. Subfigures (a,c,e) show the applied current profiles at 0◦C, 40◦C, and −10◦C, respectively. 
Subfigures (b,d,f) compare the simulated voltage response from the SPM with experimental data at the 
corresponding temperatures.
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Impact of ambient temperature on li-ion cell performance
Figure  8 illustrates the evolution of average discharge capacity over time under four ambient temperatures. 
A notable observation is the initially low capacity at 0 ◦C and 40 ◦C, followed by a significant increase in 
subsequent cycles. This phenomenon aligns with previously reported electrochemical behavior, in which 
LiFePO4 cells exhibited suppressed capacity at low temperatures due to sluggish lithium-ion transport 
and elevated internal resistance, particularly during early cycles41. Such transient behavior may arise from 
the relaxation of concentration gradients, impedance recovery, and kinetic stabilization. Additionally, the 
temperature-dependent trends in our data mirror those presented in41, confirming that sub-zero (−10 ◦C ) 
ambient temperatures accelerate capacity degradation, while moderate temperatures (e.g., 21 ◦C and 40 ◦C) 
maintain relatively stable performance. The capacity jumps observed in our experiments, especially during the 
early stages, are therefore not necessarily indicative of degradation reversal, but rather reflect transient kinetic 
limitations that resolve as the cell thermally and electrochemically stabilizes. The time to complete 100 cycles is 
considerably longer under cold conditions (0 ◦C and −10 ◦C) compared with 21 ◦C and 40 ◦C, reflecting the 
slower kinetics at low temperature.

Broader implications and future directions
The multi-layer thermal dynamics model presented in this study enables detailed resolution of internal 
temperatures in cylindrical LiBs, offering insights into critical phenomena such as hotspot formation and 
thermal runaway. By capturing thermal dynamics across individual components, the model provides a valuable 
foundation for developing more effective and reliable thermal management systems. While this study does not 
directly propose or implement a thermal management strategy, the experimental validation of internal thermal 
behavior across a wide range of ambient temperatures establishes a foundation for future work in this direction. 

Figure 7.  Validation of the multi-layer thermal model at three ambient temperatures: (a) 0◦C and (b) 40◦C, 
(c,d) 40◦C, and (e,f) −10◦C. Subfigures (a,c,e) compare simulated and experimental case temperatures, while 
subfigures (b,d,f) show the internal temperature evolution across multiple layers.
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In particular, the results may support the development of control-oriented approaches and data-driven methods 
for thermal regulation in cylindrical LiBs.

The demonstrated robustness across different ambient temperatures suggests that the framework is well-
suited for real-world operating environments, including both elevated and sub-zero conditions. The use of 
thermal cameras is planned for future work to visualize temperature distribution across the cell. Moreover, 
the integration of electrochemical and thermal dynamics supports future investigations into fully coupled 
multiphysics models, with potential applications in battery control, safety diagnostics, and condition-based 
maintenance.

While this study focuses on cylindrical cells, the modeling approach is inherently scalable to other battery 
formats, such as pouch and prismatic cells. Adapting the model to these geometries would primarily require 
redefining the thermal resistance network based on the corresponding coordinate system and structural layout, 
as well as adjusting the number and spatial arrangement of internal layers to reflect the specific design of each 
format. Beyond geometry, the proposed framework also offers a basis for evaluating material properties and 
structural design strategies aimed at enhancing thermal stability. Collectively, these contributions deepen the 
understanding of heat transport within LiBs and support the development of safer, more efficient energy storage 
systems.

Conclusion
This study presented an electrochemical-thermal model for cylindrical lithium-ion batteries, integrating 
a detailed multi-layer thermal framework with electrochemical dynamics. The model accurately captures 
temperature evolution across internal components, providing valuable insights into heat accumulation, thermal 
gradients, and the effects of ambient temperature variation.

Validation against experimental data under ambient conditions ranging from 0◦C to 40◦C showed strong 
overall agreement, particularly at 21◦C, where model parameters were calibrated. At 0◦C and 40◦C, a slight 
cooling delay was observed, attributed to the use of temperature-independent parameters. Nonetheless, the 
model successfully reproduced the experimental temperature profiles across all tested conditions, demonstrating 
its robustness and applicability for thermal diagnostics and system design.

At −10◦C, the model exhibited more significant deviations, likely due to the assumption of constant thermal 
properties. This result highlights the importance of incorporating temperature-dependent parameters to improve 
predictive accuracy under extreme cold conditions. Despite this limitation, the framework remains physically 
grounded and computationally efficient, enabling in-depth thermal analysis for high-demand applications.

Methods
This section outlines the thermal and electrochemical models that constitute the proposed cascaded framework. 
The derivation begins with the multi-layer thermal model, which captures the temperature dynamics of each 
internal component within the cylindrical battery cell. This model is constructed based on the real spiral wound 
architecture of 26650-format lithium-ion batteries and resolves detailed heat transfer across all layers.

Following the thermal formulation, the electrochemical dynamics are described using the SPM, which 
governs lithium-ion concentration and cell voltage behavior. These electrochemical states are used to compute 
the internal heat generation, which serves as the input to the thermal model. Together, these components form a 
hierarchical framework that connects internal electrochemical activity to the temporal evolution of temperature 
across the battery structure.

The full modeling structure builds upon the cascaded electrochemical-thermal framework previously 
introduced in33, which includes a detailed derivation of an observer-based estimation method. The present 
study, however, emphasizes the physical interpretation and experimental validation of the model across varied 
ambient temperatures.

Figure 8.  Evolution of discharge capacity over time at four ambient temperatures: 21◦C (100 cycles), 0◦C 
(100 cycles), 40◦C (100 cycles), and −10◦C (100 cycles).
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Thermal model
Building upon our previously introduced framework, the thermal model is developed based on the multi-layer 
structure of cylindrical lithium-ion batteries, where each internal component is individually modeled to resolve 
its thermal behavior33. For i ∈ 0, 9 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, the energy balance is expressed as:

	 Ėst,i(t, r, θ, z) = Ėin,i(t, r, θ, z) − Ėout,i(t, r, θ, z) + Ėg,i(t, r, θ, z), � (3)

where (r, θ, z) ∈ R3 are cylindrical coordinates. Here, Ėst,i denotes the rate of energy stored, Ėg,i is the rate of 
internal heat generation, and Ėin,i, Ėout,i are the rates of thermal energy entering and leaving the component, 
respectively. Due to the layered, spiral-wound configuration, thermal conduction in the axial direction is more 
efficient than in the radial direction. It is assumed that the battery ends are adiabatic, with minimal axial heat 
exchange42, so the net heat transfer across these surfaces is considered negligible. As a result, Eq. (3) simplifies to:

	 Ėst,i(t) = Ėg,i(t).� (4)

The rate of change of temperature in each layer is given by:

	
Ṫi(t) = Qi(t)

ρicp,i
,� (5)

for i ∈ 0, 9. Here ρi and cp,i denote the density and specific heat capacity of component i, and Qi(t) is the net 
heat input:

	

Qi(t) = S(t)
8∑

j = 0
j ̸= i

vj

+ qcond,i(t)
vi

+ qconv,i(t)
vi

,

� (6)

 with vi representing the component volume. Here, S(t) is the electrochemical heat generation, qcond,i is the 
conductive heat flow between adjacent layers, and qconv,i accounts for convective exchange with the electrolyte. 
The volume vj  excludes the case.

Conduction between layers follows Fourier’s law:

	
qcond,i(t) = ∆Ti(t)

Ri
,� (7)

where ∆Ti(t) is the temperature difference across layer interfaces and Ri is the thermal resistance:

	
Ri = 1

2πkiLi
ln

(
r2

r1

)
,� (8)

with ki denoting thermal conductivity, Li the axial length, and r1, r2 the inner and outer radii of the layer. Due 
to the liquid nature of the electrolyte, its thermal conductivity is much lower than that of solid materials, making 
its role in heat conduction minimal and frequently disregarded in thermal models43,44. Consequently, this study 
assumes qcond,0 = 0, implying that the thermal resistance R0 within the electrolyte is omitted.

Convective heat exchange between the electrolyte and surrounding components follows Newton’s law of 
cooling:

	 qconv,i(t) = hA∆Ti(t),� (9)

where h is the convective heat transfer coefficient, A is the contact area, and ∆Ti(t) is the temperature difference 
between the electrolyte and component i. No convective transfer is modeled between the electrolyte and the 
external casing.

Multi-layer model
To resolve internal temperature dynamics with high fidelity, a multi-layer thermal model is constructed by 
explicitly representing each internal component across all layers of the cylindrical battery. For the 26650-format 
cell examined in this study, the spiral-wound structure comprises 38 repeating layers, each consisting of 8 
components. Together with the electrolyte and outer casing, this configuration results in a total of 306 thermal 
states. Each state evolves according to its own energy balance, yielding a system of coupled ordinary differential 
equations. This formulation enables fine-grained resolution of heat propagation, accumulation, and dissipation 
across the entire cell architecture, supporting detailed analysis of internal thermal gradients and potential 
hotspots. The multi-layer model is defined as:

	 Ṫmulti(t) = AmultiTmulti(t) + Bmultiu(t), � (10)

	 ymulti(t) = CmultiTmulti(t). � (11)
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The temperature state vector is denoted by Tmulti(t) ∈ R306×1. The matrices Amulti, Tmulti, Bmulti, and 
Cmulti are given by:

	

Amulti =




Asingle(1, 1 : 9) [[Asingle(1, 2 : 9) . . . Asingle(1, 2 : 9)]37 times 0]
Asingle(2 : 9, :) 08×296

0296×296




Asingle(2 : 9, :)
...

Asingle(2 : 9, :)




37 times
01×296 Asingle(10, :)




∈ R306×306, � (12)

	

Bmulti =




Bsingle(1, :)


Bsingle(2 : 9, :)
...

Bsingle(2 : 9, :)




304 times
Bsingle(10, :)


 ∈ R306×2, � (13)

	 Cmulti = [01×296 Csingle] ∈ R1×306. � (14)

The matrices Asingle, Bsingle, and Csingle are constructed by considering a single layer, using (5), (7), and (9) for 
each component. Substituting these matrices into (12), (13), and (14) allows the model to be expanded to include 
all layers within the battery. The matrices Asingle, Bsingle, and Csingle are defined as follows:

	

Asingle =




α1 −α2 −α3 −α3 −α3 −α3 −α3 −α3 −α3 0
−β1 β2 0 0 0 0 0 0 0 0
−γ1 γ2 γ3 0 0 0 0 0 0 0
−δ1 0 δ2 δ3 0 0 0 0 0 0
−ϵ1 0 0 ϵ2 ϵ3 0 0 0 0 0
−ζ1 0 0 0 ζ2 ζ3 0 0 0 0
−η1 0 0 0 0 η2 η3 0 0 0
−θ1 0 0 0 0 0 θ2 θ3 0 0
−ι1 0 0 0 0 0 0 ι2 ι3 0
0 0 0 0 0 0 0 0 κ1 κ2




∈ R10×10, � (15)

	
Bsingle =

[ 0 0 0 0 0 0 0 0 0 λ1
λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 0

]tr
∈ R10×2, � (16)

	 Csingle = [0 0 0 0 0 0 0 0 0 1] ∈ R1×10. � (17)

The parameters and their definitions are given by:

	

α1 = hA

Ψ0
+ nhA1

Ψ0
, α2 = hA

Ψ0
, α3 = hA1

Ψ0
,

β1 = hAR1 + 1
Ψ1R1

, β2 = hAR1 − 1
Ψ1R1

,

γ1 = hA1

Ψ2
, γ2 = 1

Ψ2R2
, γ3 = hA1R2 − 1

Ψ2R2
,

δ1 = hA1

Ψ3
, δ2 = 1

Ψ3R3
, δ3 = hA1R3 − 1

Ψ3R3
,

ϵ1 = hA1

Ψ4
, ϵ2 = 1

Ψ4R4
, ϵ3 = hA1R4 − 1

Ψ4R4
,

ζ1 = hA1

Ψ5
, ζ2 = 1

Ψ5R5
, ζ3 = hA1R5 − 1

Ψ5R5
,

η1 = hA1

Ψ6
, η2 = 1

Ψ6R6
, η3 = hA1R6 − 1

Ψ6R6
,

θ1 = hA1

Ψ7
, θ2 = 1

Ψ7R7
, θ3 = hA1R7 − 1

Ψ7R7
,

ι1 = hA1

Ψ8
, ι2 = 1

Ψ8R8
, ι3 = hA1R8 − 1

Ψ8R8
,

κ1 = 1
Ψ9R9

, κ2 = −Rair − R9

Ψ9R9Rair
, λ1 = −1

µ9Rair
,

λ2 = 1
µ0

, λ3 = 1
µ1

, λ4 = 1
µ2

,

λ5 = 1
µ3

, λ6 = 1
µ4

, λ7 = 1
µ5

,

λ8 = 1
µ6

, λ9 = 1
µ7

, λ10 = 1
µ8

,
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where n in α1 represents the number of interactions between the electrolyte and each component within a layer, 
Ψi = ρicpivi and µi = ρicpivj  for i ∈ 0, 9 and j ∈ 0, 8.

The input vector u(t) is given by:

	 u(t) = [Tair(t) S(t)]tr ∈ R2×1. � (18)

Here, Tair(t) represents the air temperature, while S(t) denotes the electrochemical heat generated by reactions 
occurring inside the battery.

Electrochemical heat generation
Electrochemical heat generation, denoted S(t), is computed as:

	 S(t) = V (t)|I(t)|,� (19)

where V(t) is the terminal voltage simulated by the electrochemical model and I(t) is the applied current. The 
absolute value ensures that S(t) remains non-negative, accounting for thermal energy produced during both 
charge and discharge phases45, Chapter 2, Sect. 2.1. Although heat generation is sometimes approximated 
as I(t)2R, this method requires real-time tracking of internal resistance R(t), which is highly nonlinear and 
dependent on state of charge and temperature. Instead, the use of V(t)|I(t)| implicitly captures resistive losses 
while remaining computationally efficient.

The terminal voltage V(t) is modeled as the difference in electric potential between the solid phases of the 
positive and negative electrodes:

	 V (t) = ϕ+
s (t) − ϕ−

s (t),� (20)

where each potential includes contributions from reaction overpotential, open-circuit voltage, and resistive 
effects:

	 ϕ±
s (t) = η±(t) + U±(c±

ss(t), T ) + F R±j±(t).� (21)

Here, η±(t) is the reaction overpotential, U± is the equilibrium potential evaluated at the particle surface 
concentration c±

ss(t) ≜ c±
s (t, R±

s ), F is Faraday’s constant, and R± denotes internal resistance within each 
electrode.

The overpotential is described by a Butler-Volmer formulation:

	
η±(t) = RgT

αF
sinh−1

(
F

2i±
0 (t)

j±(t)
)

,� (22)

with Rg  being the gas constant, T the temperature, α the symmetry factor, and i±
0 (t) the exchange current 

density:

	 i±
0 (t) = k± [

c±
ss(t)

]αc
[
ce,0(c±,max

s − c±
ss(t))

]αa
,� (23)

where k± is the rate constant, αc, αa are transfer coefficients, and ce,0 is the reference electrolyte concentration.
The lithium concentration dynamics in the solid phase are governed by the following spherical diffusion 

equation for each electrode:

	

∂c±
s

∂t
(t, rs) = 1

r2
s

∂

∂rs

(
D±

s (T (t))r2
s

∂c±
s

∂rs
(t, rs)

)
, � (24)

	
∂c±

s

∂rs
(t, 0) = 0, � (25)

	

∂c±
s

∂rs
(t, R±

s ) = − 1
D±

s (T (t))
j±(t), � (26)

	 c±
s (0, rs) = c±

s,0(rs), � (27)

where rs is the radial coordinate within a spherical particle, D±
s (T (t)) are the solid diffusion coefficients and 

j±(t) are the molar fluxes at the particle surface:

	
j+(t) = − I(t)

a+
s F L+

, j−(t) = I(t)
a−
s F L−

,� (28)

with a±
s  as the interfacial surface area, and L± the electrode thickness. This electrochemical formulation enables 

direct cascading into the thermal model through the computed heat source term S(t), ensuring that temperature 
simulations reflect realistic internal reaction behavior under varying current loads.
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Assumption 1  The solid-phase diffusion coefficients D±
s  are assumed constant and independent of temperature.

Thermal and electrochemical parameters
Table 1 presents the thermal and electrochemical parameters used in the simulation, which were obtained from46. 
The multi-layer model employs absolute component volumes to capture the cumulative thermal contributions of 
the electrolyte, electrodes, separators, collectors, and casing across the entire battery structure. This volumetric 
fidelity ensures that heat generation and distribution are accurately represented without requiring normalization. 
Accurately determining thermal conductivity is essential for modeling internal heat transfer in lithium-ion 
batteries. In this study, constant thermal conductivity values are adopted from established literature46. However, 
recent research has introduced advanced methodologies to account for anisotropic effects. An experimental-
numerical framework for quantifying directional thermal conductivities in battery components has been 
presented, underscoring the value of incorporating anisotropy to improve thermal modeling accuracy47.

To streamline the computational modeling of thermal resistances, an average resistance value was calculated 
based on the mean internal radius of the cylindrical cell. This approximation simplifies the integration of multiple 
conductive pathways while preserving the overall physical consistency of heat transfer between layers. Given the 

Category Parameter Value/unit

Thermal parameters

Density of electrolyte (ρ0) 1130 kg/m3

Density of negative collector (ρ3) 8900 kg/m3

Density of negative electrode (ρ2,4) 2500 kg/m3

Density of positive collector (ρ7) 2700 kg/m3

Density of positive electrode (ρ6,8) 1500 kg/m3

Density of separator (ρ1,5) 1200 kg/m3

Case diameter (De) 25.85 × 10−3  m

Initial layer diameter (Di) 1.3 × 10−3  m

Specific heat capacity of case (c9) 2420 J/(kg K)

Specific heat capacity of electrolyte (c0) 2055.1 J/(kg K)

Specific heat capacity of negative collector (c3) 3440 J/(kg K)

Specific heat capacity of negative electrode (c2,4) 800 J/(kg K)

Specific heat capacity of positive collector (c7) 2420 J/(kg K)

Specific heat capacity of positive electrode (c6,8) 800 J/(kg K)

Specific heat capacity of separator (c1,5) 800 J/(kg K)

Thermal conductivity of negative collector (K3) 398 W/(m K)

Thermal conductivity of negative electrode (K2,4) 1.04 W/(m K)

Thermal conductivity of positive collector (K6,8) 238 W/(m K)

Thermal conductivity of separator (K1,5) 1 W/(m K)

Thermal resistance (R1) 0.0071 K/W

Thermal resistance (R2) 0.0126 K/W

Thermal resistance (R3) 9.4104 × 10−6  K/W

Thermal resistance (R6) 0.0162 K/W

Thermal resistance (R7) 3.1187 × 10−5  K/W

Geometric parameters
Electrolyte volume 3.0894 × 10−5  m3

Components volume 3.0894 × 10−5  m3

Electrochemical parameters

Faraday constant (F) 96,487 C/mol

Gas constant (R) 8.314 J/(mol K)

Height (H) 65.15 × 10−3  m

Negative electrode diffusion coefficient (D−) 3.0 × 10−14  m2/s

Positive electrode diffusion coefficient (D+) 2.5 × 10−16  m2/s

Positive electrode radius (Rp) 3.5 × 10−6  m

Thickness of negative collector (L3) 1 × 10−5  m

Thickness of negative electrode (L2,4) 3.5 × 10−5  m

Thickness of positive collector (L7) 2 × 10−5  m

Thickness of separator (L1,5) 2 × 10−5  m

Table 1.  Parameters used in the simulation.
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relatively small variation in radius across successive layers, this simplification offers a practical balance between 
numerical efficiency and modeling fidelity.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author upon 
reasonable request.
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